Item-Level Social Influence Prediction with Probabilistic Hybrid Factor Matrix Factorization
نویسندگان
چکیده
Social influence has become the essential factor which drives the dynamic evolution process of social network structure and user behaviors. Previous research often focus on social influence analysis in network-level or topic-level. In this paper, we concentrate on predicting item-level social influence to reveal the users’ influences in a more fine-grained level. We formulate the social influence prediction problem as the estimation of a user-post matrix, where each entry in the matrix represents the social influence strength the corresponding user has given the corresponding web post. To deal with the sparsity and complex factor challenges in the research, we model the problem by extending the probabilistic matrix factorization method to incorporate rich prior knowledge on both user dimension and web post dimension, and propose the Probabilistic Hybrid Factor Matrix Factorization (PHFMF) approach. Intensive experiments are conducted on a real world online social network to demonstrate the advantages and characteristics of the proposed method.
منابع مشابه
Content-Based Social Recommendation with Poisson Matrix Factorization
We introduce Poisson Matrix Factorization with Content and Social trust information (PoissonMF-CS), a latent variable probabilistic model for recommender systems with the objective of jointly modeling social trust, item content and user’s preference using Poisson matrix factorization framework. This probabilistic model is equivalent to collectively factorizing a non-negative user–item interacti...
متن کاملHierarchical Bayesian Matrix Factorization with Side Information
Bayesian treatment of matrix factorization has been successfully applied to the problem of collaborative prediction, where unknown ratings are determined by the predictive distribution, inferring posterior distributions over user and item factor matrices that are used to approximate the user-item matrix as their product. In practice, however, Bayesian matrix factorization suffers from cold-star...
متن کاملSparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering
In recommendation systems, probabilistic matrix factorization (PMF) is a state-of-the-art collaborative filtering method by determining the latent features to represent users and items. However, two major issues limiting the usefulness of PMF are the sparsity problem and long-tail distribution. Sparsity refers to the situation that the observed rating data are sparse, which results in that only...
متن کاملLink sign prediction by Variational Bayesian Probabilistic Matrix Factorization with Student-t Prior
In signed social networks, link sign prediction refers to using the observed link signs to infer the signs of the remaining links, which is important for mining and analyzing the evolution of social networks. The widely used matrix factorization-based approach – Bayesian Probabilistic Matrix Factorization (BMF), assumes that the noise between the real and predicted entry is Gaussian noise, and ...
متن کاملContext-Aware Collaborative Topic Regression with Social Matrix Factorization for Recommender Systems
Online social networking sites have become popular platforms on which users can link with each other and share information, not only basic rating information but also information such as contexts, social relationships, and item contents. However, as far as we know, no existing works systematically combine diverse types of information to build more accurate recommender systems. In this paper, we...
متن کامل